
RSAnt	-	Writeup
Author:	Luca	Boscarato

Challenge	Source	Code:
from	random	import	*

from	Crypto.Util.number	import	*

from	math	import	gcd

flag	=	bytes_to_long(b"RICK{NeverGonnaGiveYouUp}")

def	encrypt():

				tmp	=	randint(2**1023,	2**1024)

				p	=	next_prime(1337*tmp	+	randint(2,	2**512))

				q	=	next_prime(7331*tmp	+	randint(2,	2**512))

				N	=	p*q

				return	N

def	l3ak(n):

				print('Security	Alert!!')

				print('There	is	a	L3AKER	l3aking	our	data!!	[~]	:/\n')

				c1	=	pow(bytes_to_long(b"factoring	modulus?"),	e,	n)

				c2	=	pow(bytes_to_long(b"without	the	modulus?"),	e,	n)

				return	c1,	c2

e	=	65537

n	=	encrypt()

enc	=	pow(flag,	e,	n)

c1,	c2	=	l3ak(n)

print(f'Encrypted	flag	=	{enc}\n')

print(f'c1	=	{c1}\n')

print(f'c2	=	{c2}\n')

Information	Retrieval
This	challenge	has	to	do	with	RSA.	However,	this	is	not	a	classical	RSA	challenge,	since	the	value	we	are	provided	with	are	the	encrypted	flag	and	two

ciphertexts	of	which	the	plaintext	is	known.	Therefore,	to	make	a	recap,	let	us	list	all	the	elements	we	have	at	disposal:

Public	exponent	e	-	We	know	that	the	value	for	e	is	65537

We	have	two	couples	(plaintext,ciphertext)

We	have	the	encrypted	flag

How	the	modulo	n	was	generated

Exploitation
At	a	first	glance,	the	name	of	the	function	l3ak	is	suspicious	-	let	us	start	from	it.	The	function	encrypts	two	messages	and	returns	the	correspondant

ciphertexts.	What	one	should	notice	here	is	that	for	both	operations,	both	the	ciphertext	and	plaintext	value	is	known.	To	get	the	plaintext	value	we	just

reproduce	the	same	computation	done	by	the	server:

m1	=	bytes_to_long(b"factoring	modulus?")	#8918592752769306591549842352178849425748799

m2	=	bytes_to_long(b"without	the	modulus?")	#681721620536571024375232508196690023732368208703

Can	we	perhaps	carry	out	a	known	plaintext	attack	in	this	case?	The	answer	to	the	question	is	yes.	In	particular,	since	the	public	exponent	used	is	not

extremely	large	(65537),	it	is	sufficient	to	compute	 gcd(m1**e−c1,m2**e−c2) 	and	the	result	will	be	 .	Therefore,	as	a	result	of	the

computation	of	the	gcd,	we	will	get	a	multiple	of	n	(notice	that	k	can	also	be	1	in	some	cases).	Furthermore,	notice	that	k	is	extremely	likely	to	be	small,

therefore	we	can	simply	try	small	values	up	until	we	get	a	correspondance	for:	 pow(m1,e,n)	==	c1 .

Perfect,	now	we	have	successfully	retrieved	the	modulo	n,	what	is	the	next	step?	In	order	to	decrypt	the	flag,	we	necessarily	need	the	private	exponent	d,

which	can	not	be	retrieved	by	any	kind	of	attack	given	the	provided	couple	(e,n).	What	we	can	do,	though,	is	try	to	find	a	way	to	factor	n.	In	particular,	if

one	looks	at	the	encrypt	function,	it	is	clear	that	p	is	a	prime	number	very	close	to	 1337*tmp 	and	q	is	a	prime	number	very	close	to	 7331*tmp 	(since	in

both	cases	we	are	adding	at	most	2 ,	which	is	insignificant	compared	to	2 	or	2).	From	this,	we	deduce:

tmp	=	isqrt((n)/(1337*7331))

According	to	what	we	stated	before,	we	can	approximate	our	q	like	this:

q_approx	=	7331*tmp	-	2**513

N.B.	we	remove	2**513	to	avoid	overestimating	the	q.

Now	we	need	to	find	the	“missing”	part.	The	question	we	ask	ourselves	is:	“Which	is	the	number	that	added	to	our	q_approx	lets	us	get	the	correct	value	of

q”?	This	question	can	be	answered	via	Coppersmith,	in	this	way:

F.<x>	=	PolynomialRing(Zmod(n),	implementation='NTL')

f	=	x	-	q_approx	

roots	=	f.small_roots(X=2**512,	beta=0.5)

The	general	idea	is	that	we	build	a	polynomial	 f 	starting	from	our	 q_approx 	and	trying	to	find	the	roots	of	 x-q_approx ,	in	which	 x 	has	to	be	a	512

bits	number	(given	the	information	we	retrieved	from	the	encrypt	function).	If	such	an	 x 	is	found,	we	have	successfully	found	the	“missing”	part	of	the

number.	Notice	that	the	value	for	beta	should	be	found	via	trial	and	error.

So	we	can	compute	our	original	q:

q	=	q_approx-delta

With	this	being	done,	we	have	basically	solved	the	challenge	because	we	can	just	apply	the	standard	equalities	for	RSA	and	retrieve	our	parameters:

p	=	int(n)//int(q)

d	=	inverse_mod(65537,	(p-1)*(q-1))

Lastly,	we	get	our	well	deserved	flag:

print(long_to_bytes(int(pow(ciphertext,d,n))))

Additional	notes
During	the	competition,	we	have	experienced	troubles	trying	to	compute	the	exponentiation	of	 m1^e 	using	the	 pow 	function	from	python.	This	is	likely

due	to	the	internal	implementation	of	the	function	and	how	it	behaves	when	big	integers	are	to	be	computed.	To	avoid	this	issue,	one	can	use	the	default

512 1023 1024

python	exponentiation	 m1**e .

Full	script
from	Crypto.Util.number	import	*

from	math	import	gcd

e	=	65537

ciphertext	=	17929968684899453914112238296223003774438449762160319812407700399163631976960356406281709235360090

659120747625132728227769511026870461512006865477618350720451270276684793012590050065998305018527434489902577972

652356528003290819476335694454982496321533941903854339043965521074151014300358273799661777089569216230628606442

171889279721376523730092692567515307489453293593729129580215730572485632158451713122694014019049115770989442168

319676670767259315440626305443690056623146471910231297324746651041877003919400087889751583898562346117678262826

1365771619698859295767451162504151010728056594695117040661023327968023451519804564

c1	=	1233778822410822513253500654190488060246076086170916889838303232776046946412406533744393028071381224633239

904183487475375913476562621955555334684161195509029635465376865396264241516826474466532861784092577165639582793

069785149210531344827770356892095635996486035072877066623789313005857301548130001473257375182015680526301017040

511943961839901748937181302437032512557334222312151145943560860855298457219451626347471943301586307223702978880

408092873722149164111099610660394192824863414149734866251153941066019909114590690756096720978338939613122512523

96858703096951885954537748265354572684903035976149443662164781331591137509

c2	=	2169964623488828121275491266961288489150074797357590679255839409140057837047777393835834865002480265329900

068131478823574695397586744162716972101956840945721165886190818131319301867780457550895860402329780394414322320

500422718531944704130445991176413258120114119508891722425590991350261724257338012151102867483701569624444096780

691395743519488379829998618355697152496828282768769101292560294851731836755219265528413647134892249452221004759

967996010246315995225989836615013576401964871342753940972074898182175012357325113019426490243629995380930088335

93968191799917057618382726046836320499881842515455356124359654138411130319

m1	=	bytes_to_long(b"factoring	modulus?")

m2	=	bytes_to_long(b"without	the	modulus?")

ct_1	=	m1**e

ct_2	=	m2**e

							

n	=	gcd(ct_1-c1,	ct_2-c2)//2

tmp	=	isqrt((n)/(1337*7331))

q_approx	=	7331*tmp	-	2**513

F.<x>	=	PolynomialRing(Zmod(n),	implementation='NTL')

f	=	x	-	q_approx	

roots	=	f.small_roots(X=2**512,	beta=0.5)

for	delta	in	roots:

				q	=	q_approx-delta

				p	=	int(n)//int(q)

				d	=	inverse_mod(65537,	(p-1)*(q-1))

				print(long_to_bytes(int(pow(ciphertext,d,n))))

